Mối quan hệ giữa đa thức đối xứng (symmetric polinomial) và nghiệm (root) của phương trình đa thức
Các đa thức đối xứng (symmetric polinomials) đóng vai trò quan trọng trong việc hiểu mối quan hệ giữa các nghiệm (root) của các phương trình đa thức và các hệ số (coefficient) của chúng. Trong bài viết này, chúng ta sẽ khám phá sâu hơn về mối liên hệ này, từ định nghĩa cơ bản đến các ứng dụng thực tiễn.
1. Đa thức đối xứng:
Định nghĩa cơ bản
Đa thức đối xứng với các biến $x_1, x_2, \ldots, x_n$ là một đa thức không thay đổi dưới bất kì phép hoán vị (permutation) nào của các biến. Cụ thể, với bất kì phép hoán vị $\sigma$ nào của các chỉ số ${1, 2, \ldots, n}$: